Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Front Biosci (Landmark Ed) ; 28(1): 8, 2023 01 13.
Article in English | MEDLINE | ID: covidwho-2229632

ABSTRACT

BACKGROUND: Drug resistance is a critical problem in health care that affects therapy outcomes and requires new approaches to drug design. SARS-CoV-2 Mpro mutations are of concern as they can potentially reduce therapeutic efficacy. Viral infections are amongst the many disorders for which nutraceuticals have been employed as an adjunct therapy. The aim of this study was to examine the potential in vitro activity of L-arginine and vitamin C against SARS-CoV-2 Mpro. METHODS: The Mpro inhibition assay was developed by cloning, expression, purification, and characterization of Mpro. Selected compounds were then screened for protease inhibition. RESULTS: L-arginine was found to be active against SARS-CoV-2 Mpro, while a vitamin C/L-arginine combination had a synergistic antiviral action against Mpro. These findings confirm the results of our previous in silico repurposing study that showed L-arginine and vitamin C were potential Mpro inhibitors. Moreover, they suggest a possible molecular mechanism to explain the beneficial effect of arginine in COVID patients. CONCLUSIONS: The findings of the current study are important because they help to identify COVID-19 treatments that are efficient, inexpensive, and have a favorable safety profile. The results of this study also suggest a possible adjuvant nutritional strategy for COVID-19 that could be used in conjunction with pharmacological agents.


Subject(s)
Arginine , Ascorbic Acid , Coronavirus 3C Proteases , SARS-CoV-2 , Humans , Arginine/pharmacology , Ascorbic Acid/pharmacology , COVID-19 , Dietary Supplements , SARS-CoV-2/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors
2.
Molecules ; 25(17)2020 Aug 23.
Article in English | MEDLINE | ID: covidwho-727434

ABSTRACT

The SARS-CoV-2 outbreak caused an unprecedented global public health threat, having a high transmission rate with currently no drugs or vaccines approved. An alternative powerful additional approach to counteract COVID-19 is in silico drug repurposing. The SARS-CoV-2 main protease is essential for viral replication and an attractive drug target. In this study, we used the virtual screening protocol with both long-range and short-range interactions to select candidate SARS-CoV-2 main protease inhibitors. First, the Informational spectrum method applied for small molecules was used for searching the Drugbank database and further followed by molecular docking. After in silico screening of drug space, we identified 57 drugs as potential SARS-CoV-2 main protease inhibitors that we propose for further experimental testing.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/drug effects , Cysteine Endopeptidases/chemistry , Mezlocillin/chemistry , Protease Inhibitors/chemistry , Raltegravir Potassium/chemistry , Viral Nonstructural Proteins/chemistry , Allosteric Site , Antiviral Agents/pharmacology , Betacoronavirus/enzymology , Betacoronavirus/pathogenicity , COVID-19 , Catalytic Domain , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Drug Repositioning , Gene Expression , High-Throughput Screening Assays , Humans , Mezlocillin/pharmacology , Molecular Docking Simulation , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/enzymology , Pneumonia, Viral/virology , Protease Inhibitors/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Raltegravir Potassium/pharmacology , SARS-CoV-2 , Thermodynamics , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL